AU2340224_Devarshi_Kailashbhai_Limbasiya
Submission at 2024-08-16 04:56:55
#include <iostream>
using namespace std;
int fibonacci(int x) {
if(x==0){
return 0;
}
else if(x==1){
return 1;
}
else{
return fibonacci(x-1)+fibonacci(x-2);
}
}
int main() {
int x;
cin >> x;
// Calculate and print the Fibonacci number for the input x
cout << fibonacci(x) << endl;
return 0;
}
Submission at 2024-08-16 05:39:22
#include <iostream>
using namespace std;
bool isPowerOfTwo(int n) {
// Write your logic here
if (n == 1){
return true;
}
if (n == 0 || n%2 != 0){
return false;
}
else {
return isPowerOfTwo(n / 2);
}
}
int main() {
int n;
cin >> n;
// Determine if n is a power of two
cout << (isPowerOfTwo(n) ? "true" : "false") << endl;
return 0;
}
Submission at 2024-08-16 05:40:01
#include <iostream>
using namespace std;
bool isPowerOfTwo(int n) {
// Write your logic here
if (n == 1){
return true;
}
if (n == 0 || n%2 != 0){
return false;
}
else {
return isPowerOfTwo(n / 2);
}
}
int main() {
int n;
cin >> n;
// Determine if n is a power of two
cout << (isPowerOfTwo(n) ? "true" : "false") << endl;
return 0;
}
Submission at 2024-08-22 12:06:19
#include <iostream>
#include <vector>
#include <string>
using namespace std;
void generateParenthesis(int n, int open, int close, string current, vector<string>& result) {
if (current.length() == 2 * n) {
result.push_back(current);
return;
}
if (open < n) {
generateParenthesis(n, open + 1, close, current + '(', result);
}
if (close < open) {
generateParenthesis(n, open, close + 1, current + ')', result);
}
}
vector<string> generateParentheses(int n) {
vector<string> result;
generateParenthesis(n, 0, 0, "", result);
return result;
}
int main() {
int n;
cin >> n;
vector<string> combinations = generateParentheses(n);
// Print the combinations
cout << "[";
for (size_t i = 0; i < combinations.size(); ++i) {
cout << "\"" << combinations[i] << "\"";
if (i < combinations.size() - 1) {
cout << ",";
}
}
cout << "]" << endl;
return 0;
}
Submission at 2024-08-22 12:09:47
#include <iostream>
#include <vector>
#include <sstream>
#include <algorithm>
using namespace std;
void permute(vector<int>& nums, vector<vector<int>>& result, int start) {
if (start >= nums.size()) {
result.push_back(nums);
return;
}
for (int i = start; i < nums.size(); ++i) {
swap(nums[start], nums[i]);
permute(nums, result, start + 1);
swap(nums[start], nums[i]);
}
}
// Function to generate all permutations and return them in sorted order
vector<vector<int>> permuteUnique(vector<int>& nums) {
vector<vector<int>> result;
permute(nums, result, 0);
// Sort the result to ensure permutations are in sorted order
sort(result.begin(), result.end());
return result;
}
// Comparator function for sorting permutations
bool compare(const vector<int>& a, const vector<int>& b) {
if (a.size() != b.size()) return a.size() < b.size();
for (size_t i = 0; i < a.size(); ++i) {
if (a[i] != b[i]) return a[i] < b[i];
}
return false;
}
int main() {
string line;
getline(cin, line);
istringstream iss(line);
vector<int> nums;
int num;
while (iss >> num) {
nums.push_back(num);
}
vector<vector<int>> permutations = permuteUnique(nums);
// Sort permutations based on size and first element
sort(permutations.begin(), permutations.end(), compare);
// Print permutations
cout << "[";
for (size_t i = 0; i < permutations.size(); ++i) {
cout << "[";
for (size_t j = 0; j < permutations[i].size(); ++j) {
cout << permutations[i][j];
if (j < permutations[i].size() - 1) cout << ",";
}
cout << "]";
if (i < permutations.size() - 1) cout << ",";
}
cout << "]" << endl;
return 0;
}
Submission at 2024-08-22 12:24:52
#include <iostream>
#include <vector>
using namespace std;
void combine(int start, int k, int n, vector<int>& current, vector<vector<int>>& result) {
// Write your logic
if (current.size() == k) { //base case
result.push_back(current);
return;
}
// Recursive case
for (int i = start; i <= n; ++i) {
current.push_back(i); // Adding the current number to the combination
combine(i + 1, k, n, current, result); // Recurse with the next number
current.pop_back(); // removing the last number
}
}
vector<vector<int>> combine(int n, int k) {
vector<vector<int>> result;
vector<int> current;
combine(1, k, n, current, result);
return result;
}
int main() {
int n, k;
cin >> n >> k;
// Generate combinations
vector<vector<int>> result = combine(n, k);
// Print combinations
cout<<"[";
for (int i=0;i<result.size();i++) {
cout << "[";
for (size_t j = 0; j < result[i].size(); ++j) {
cout << result[i][j];
if (j < result[i].size() - 1) cout << ",";
}
cout << "]";
if(i==result.size()-1) continue;
cout<<",";
}
cout<<"]";
return 0;
}
Submission at 2024-08-22 12:28:54
#include <iostream>
#include <vector>
using namespace std;
void combine(int start, int k, int n, vector<int>& current, vector<vector<int>>& result) {
// Write your logic
if (current.size() == k) { //base case
result.push_back(current);
return;
}
// Recursive case
for (int i = start; i <= n; ++i) {
current.push_back(i); // Adding the current number to the combination
combine(i + 1, k, n, current, result); // Recurse with the next number
current.pop_back(); // removing the last number
}
}
vector<vector<int>> combine(int n, int k) {
vector<vector<int>> result;
vector<int> current;
combine(1, k, n, current, result);
return result;
}
int main() {
int n, k;
cin >> n >> k;
// Generate combinations
vector<vector<int>> result = combine(n, k);
// Print combinations
cout<<"[";
for (int i=0;i<result.size();i++) {
cout << "[";
for (size_t j = 0; j < result[i].size(); ++j) {
cout << result[i][j];
if (j < result[i].size() - 1) cout << ",";
}
cout << "]";
if(i==result.size()-1) continue;
cout<<",";
}
cout<<"]";
return 0;
}
Submission at 2024-08-28 07:38:52
// Write the code from scratch, no boilerplate is required
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;
bool areArraysEqual(vector<int>& arr1, vector<int>& arr2) {
if (arr1.size() != arr2.size()) {
return false;
}
unordered_map<int, int> countMap1, countMap2;
for (int num : arr1) {
countMap1[num]++;
}
for (int num : arr2) {
countMap2[num]++;
}
// Compare the frequency maps
return countMap1 == countMap2;
}
int main() {
int len1, len2;
cin >> len1 >> len2;
vector<int> arr1(len1);
for (int i = 0; i < len1; ++i) {
cin >> arr1[i];
}
vector<int> arr2(len2);
for (int i = 0; i < len2; ++i) {
cin >> arr2[i];
}
if (areArraysEqual(arr1, arr2)) {
cout << "true" << endl;
} else {
cout << "false" << endl;
}
return 0;
}
Submission at 2024-08-28 07:41:31
// Write the code from scratch, no boilerplate is required
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;
bool areArraysEqual(vector<int>& arr1, vector<int>& arr2) {
if (arr1.size() != arr2.size()) {
return false;
}
unordered_map<int, int> countMap1, countMap2;
for (int num : arr1) {
countMap1[num]++;
}
for (int num : arr2) {
countMap2[num]++;
}
// Compare the frequency maps
return countMap1 == countMap2;
}
int main() {
int len1, len2;
cin >> len1 >> len2;
vector<int> arr1(len1);
for (int i = 0; i < len1; ++i) {
cin >> arr1[i];
}
vector<int> arr2(len2);
for (int i = 0; i < len2; ++i) {
cin >> arr2[i];
}
if (areArraysEqual(arr1, arr2)) {
cout << "true" << endl;
} else {
cout << "false" << endl;
}
return 0;
}
Submission at 2024-08-29 13:33:36
#include <iostream>
using namespace std;
int findKthMissing(int arr[], int n, int k) {
int missingCount = 0, currentNum = 1, i = 0;
// Loop until we find the Kth missing number
while (missingCount < k) {
if (i < n && arr[i] == currentNum) {
// If the current number is in the array, move to the next number
i++;
} else {
// If the current number is missing, increment the missing count
missingCount++;
}
// If we have found the Kth missing number, return it
if (missingCount == k) {
return currentNum;
}
currentNum++;
}
return -1; // Just a fallback, in case the loop doesn't return a value
}
int main() {
int n, k;
cin >> n >> k;
int arr[n];
for (int i = 0; i < n; i++) {
cin >> arr[i];
}
int result = findKthMissing(arr, n, k);
cout << result << endl;
return 0;
}
Submission at 2024-08-29 13:34:15
#include<iostream>
using namespace std;
int sum(int a){
int i,sum=0;
for(i=1;i<=a;i++){
if(i%3==0){
sum=sum+i;
}
else if(i%5==0){
sum=sum+i;
}
else if(i%7==0){
sum=sum+i;
}
}
return sum;
}
int main(){
int n;
cout<<"Enter n:";
cin>>n;
cout<<sum(n);
}
Submission at 2024-08-29 13:34:43
#include<iostream>
using namespace std;
int sum(int a){
int i,sum=0;
for(i=1;i<=a;i++){
if(i%3==0){
sum=sum+i;
}
else if(i%5==0){
sum=sum+i;
}
else if(i%7==0){
sum=sum+i;
}
}
return sum;
}
int main(){
int n;
cin>>n;
cout<<sum(n);
}
Submission at 2024-08-29 13:36:33
#include<iostream>
using namespace std;
int count(int a){
int i=0;
while(a!=0){
a%10;
i++;
a=a/10;
}
return i;
}
int c(int arr[],int n){
int i,m=0;
for(i=0;i<n;i++){
int d=count(arr[i]);
if(d%2==0){
m++;
}
}
return m;
}
int main(){
//cout<<count(12347435);
int h;
int arr[100];
//cout<<"Enter h";
cin>>h;
for(int i=0;i<h;i++){
cin>>arr[i];
}
//cout<<"Total";
cout<<c(arr,h);
}
Submission at 2024-08-29 13:37:23
#include <iostream>
using namespace std;
void array(int dest[], const int src[], int size) {
for (int i = 0; i < size; i++) {
dest[i] = src[i];
}
}
int sum(int arr[], int n) {
int* p = new int[n]; // Allocate memory dynamically for the temporary array
while (n > 1) {
for (int i = 0; i < n - 1; i++) {
p[i] = arr[i] + arr[i + 1];
}
array(arr, p, n - 1);
n--;
}
int result = arr[0];
delete[] p; // Free the dynamically allocated memory
return result;
}
int main() {
int n;
int b[1001];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> b[i];
}
cout << sum(b, n) << endl;
return 0;
}
Submission at 2024-08-29 13:38:21
#include<iostream>
using namespace std;
void display(int p[1001][1001],int q,int r){
for(int x=0;x<q;x++){
for(int y=0;y<r;y++){
cout<<p[x][y]<<" ";
}
cout<<endl;
}
}
void transpose(int arr[1001][1001],int l,int m){
int i,j,a1[1001][1001];
for(i=0;i<m;i++){
for(j=0;j<l;j++){
a1[i][j]=arr[j][i];
}
//cout<<endl;
}
display(a1,m,l);
}
int main(){
int b[1001][1001];
int i,j;
//cout<<"Enter i";
cin>>i;
//cout<<"Enter j";
cin>>j;
for(int x=0;x<i;x++){
for(int y=0;y<j;y++){
cin>>b[x][y];
}
//cout<<endl;
}
//cout<<"Transpose is";
transpose(b,i,j);
}
Submission at 2024-08-29 13:39:14
#include <iostream>
using namespace std;
void spiralTraversal(int n, int m, int matrix[100][100]) {
int top = 0, bottom = n - 1, left = 0, right = m - 1;
while (top <= bottom && left <= right) {
// Traverse from left to right on the top row
for (int i = left; i <= right; i++) {
cout << matrix[top][i] << " ";
}
top++; // move the top boundary down
// Traverse from top to bottom on the right column
for (int i = top; i <= bottom; i++) {
cout << matrix[i][right] << " ";
}
right--; // move the right boundary left
// Traverse from right to left on the bottom row, if still valid
if (top <= bottom) {
for (int i = right; i >= left; i--) {
cout << matrix[bottom][i] << " ";
}
bottom--; // move the bottom boundary up
}
// Traverse from bottom to top on the left column, if still valid
if (left <= right) {
for (int i = bottom; i >= top; i--) {
cout << matrix[i][left] << " ";
}
left++; // move the left boundary right
}
}
cout << endl;
}
int main() {
int n, m;
cin >> n >> m;
int matrix[100][100]; // assuming the constraints guarantee maximum size of 100x100
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> matrix[i][j];
}
}
spiralTraversal(n, m, matrix);
return 0;
}
Submission at 2024-08-29 13:39:14
#include <iostream>
using namespace std;
void spiralTraversal(int n, int m, int matrix[100][100]) {
int top = 0, bottom = n - 1, left = 0, right = m - 1;
while (top <= bottom && left <= right) {
// Traverse from left to right on the top row
for (int i = left; i <= right; i++) {
cout << matrix[top][i] << " ";
}
top++; // move the top boundary down
// Traverse from top to bottom on the right column
for (int i = top; i <= bottom; i++) {
cout << matrix[i][right] << " ";
}
right--; // move the right boundary left
// Traverse from right to left on the bottom row, if still valid
if (top <= bottom) {
for (int i = right; i >= left; i--) {
cout << matrix[bottom][i] << " ";
}
bottom--; // move the bottom boundary up
}
// Traverse from bottom to top on the left column, if still valid
if (left <= right) {
for (int i = bottom; i >= top; i--) {
cout << matrix[i][left] << " ";
}
left++; // move the left boundary right
}
}
cout << endl;
}
int main() {
int n, m;
cin >> n >> m;
int matrix[100][100]; // assuming the constraints guarantee maximum size of 100x100
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> matrix[i][j];
}
}
spiralTraversal(n, m, matrix);
return 0;
}
Submission at 2024-08-30 05:32:33
// Write code from scratch
#include<iostream>
enter namespace;
int(i=0;i<n/2;i+1);
if(size of a[i]== b[i]){
c[i] = max{a[i] & b[i]};
}
else {
}
int main(){
cin<<a[i]<<b[i]
cout>>('Sizes of arrays doen't match')
return 0;
}
Submission at 2024-08-30 05:32:33
// Write code from scratch
#include<iostream>
enter namespace;
int(i=0;i<n/2;i+1);
if(size of a[i]== b[i]){
c[i] = max{a[i] & b[i]};
}
else {
}
int main(){
cin<<a[i]<<b[i]
cout>>('Sizes of arrays doen't match')
return 0;
}
Submission at 2024-08-30 05:37:56
// write from scratch, create a function named Pow(int x, int n)
// write from scratch, create a function named Pow(int x, int n)
#include<iostream>
iostream namespace;
Pow(x,n);
int main(){
int x,n;
cin<<x<<n
cout>>(the nth power of x is())
return 0;
}
Submission at 2024-08-30 05:47:40
// write from scratch, create a function named Pow(int x, int n)
#include<iostream>
Pow(x,n)
int main(){
int x,n;
cin<<x<<n
cout>>(the nth power of x is())
return 0;
}
Submission at 2024-08-30 06:05:42
// Write code from scratch
#include<iostream>
if(size of a[i]== b[i]){
c[i] = max{a[i] & b[i]};
}
else {
}
int main(){
cin<<a[i]<<b[i]
cout>>(Sizes of arrays doen't match)
return 0;
}
Submission at 2024-09-06 04:42:45
#include<iostream>
using namespace std;
void ascending(int a[],int n){
int c;
for(int i=0;i<n;i++){
for(int j=1+i;j<n;j++){
if(a[i]>a[j]){
c=a[i];
a[i]=a[j];
a[j]=c;
}
}
}
}
void display(int a[],int n){
for(int i=0;i<n;i++){
cout<<a[i]<<" ";
}
}
bool check(int c[],int d[],int x,int y){
if(x!=y){
return false;
}
for(int i=0;i<x;i++){
if(c[i]!=d[i]){
return false;
}
}
return true;
}
int main(){
int n,f;
//cout<<"Enter the number of elements you want for array 1:";
cin>>n;
//cout<<"Enter the number of elements you want for array 2:";
cin>>f;
int arr1[100];
int arr2[100];
//cout<<"Array one is:";
for(int i=0;i<n;i++){
cin>>arr1[i];
}
//cout<<"Array two is:";
for(int i=0;i<f;i++){
cin>>arr2[i];
}
//int arr1[]={5,4,3,2,1};
//int arr2[]={1,2,3,5,4};
ascending(arr1,n);
//cout<<"arr1 is:";
//display(arr1,n);
//cout<<endl;
ascending(arr2,f);
//cout<<"arr2 is";
//display(arr2,f);
//cout<<endl;
//cout<<check(arr1,arr2,n,f);
if (check(arr1,arr2,n,f)) {
cout << "true" << endl;
} else {
cout << "false" << endl;
}
}
Submission at 2024-10-04 06:13:06
#include<iostream>
using namespace std;
int binarySearch(int str[], int low, int high,int x){
while (low <= high){
int mid = low + (high - low)/2
if (x = str[mid]){
return mid;
}
if (x < str[mid]){
high = mid - 1;
}
}
return -1;
}
int main (void){
int str[];
str[t] = anagram;
int sizeof (str[])/(str[0])
int result binarySearch (str[], n-1)
result == -1
cout<<"Given string is anagram of s"
}
Submission at 2024-10-04 06:13:07
#include<iostream>
using namespace std;
int binarySearch(int str[], int low, int high,int x){
while (low <= high){
int mid = low + (high - low)/2
if (x = str[mid]){
return mid;
}
if (x < str[mid]){
high = mid - 1;
}
}
return -1;
}
int main (void){
int str[];
str[t] = anagram;
int sizeof (str[])/(str[0])
int result binarySearch (str[], n-1)
result == -1
cout<<"Given string is anagram of s"
}
Submission at 2024-10-25 05:41:02
/*
Structure of the node of the tree is as
struct Node {
int data;
Node *left;
Node *right;
Node(int val) {
data = val;
left = right = NULL;
}
};
*/
class Solution{
public:
// return true/false denoting whether the tree is Symmetric or not
bool isSymmetric(struct Node* root)
{
// Code here
}
};
//{ Driver Code Starts.
/* Driver program to test size function*/
int main() {
int t = 1;
while (t--) {
string s, ch;
getline(cin, s);
Node* root = buildTree(s);
vector<int> ans;
Solution ob;
if(ob.isSymmetric(root)){
cout<<"true"<<endl;
}
else{
cout<<"false"<<endl;
}
}
return 0;
}
Submission at 2024-10-25 05:43:18
/*
Structure of the node of the tree is as
struct Node {
int data;
Node *left;
Node *right;
Node(int val) {
data = val;
left = right = NULL;
}
};
*/
class Solution{
public:
// return true/false denoting whether the tree is Symmetric or not
bool isSymmetric(struct Node* root)
{
// Code here
}
};
//{ Driver Code Starts.
/* Driver program to test size function*/
int main() {
int t = 1;
while (t--) {
string s, ch;
getline(cin, s);
Node* root = buildTree(s);
vector<int> ans;
Solution ob;
if(ob.isSymmetric(root)){
cout<<"true"<<endl;
}
else{
cout<<"false"<<endl;
}
}
return 0;
}
Submission at 2024-10-25 05:51:14
/* node for linked list:
struct Node {
int data;
struct Node* next;
Node(int x) {
data = x;
next = NULL;
}
};
*/
// Function to add two numbers represented by linked list.
Node* addTwoLists(Node* num1, Node* num2) {
// code here
}
Submission at 2024-10-25 05:52:59
/* node for linked list:
struct Node {
int data;
struct Node* next;
Node(int x) {
data = x;
next = NULL;
}
};
*/
// Function to add two numbers represented by linked list.
Node* addTwoLists(Node* num1, Node* num2) {
// code here
}
Submission at 2024-11-22 04:57:51
/*
Structure of the node of the tree is as
struct Node {
int data;
Node *left;
Node *right;
Node(int val) {
data = val;
left = right = NULL;
}
};
*/
// return true/false denoting whether the tree is Symmetric or not
bool isBST(struct Node* root)
{
// Code here
}
Submission at 2024-11-22 05:45:58
/*
Structure of the node of the tree is as
struct Node {
int data;
Node *left;
Node *right;
Node(int val) {
data = val;
left = right = NULL;
}
};
*/
// return true/false denoting whether the tree is Symmetric or not
bool isBST(struct Node* root)
{
}
Submission at 2024-11-22 05:47:23
/*
Structure of the node of the tree is as
struct Node {
int data;
Node *left;
Node *right;
Node(int val) {
data = val;
left = right = NULL;
}
};
*/
// return true/false denoting whether the tree is Symmetric or not
bool isBST(struct Node* root)
{
int 1 2 3 5;
key = 2;
if(Node<key)
Node = Node*left
else if (Node>key)
Node = Node*right
else
Node = Node*root
}
}
Submission at 2024-11-22 06:03:02
/*
Structure of the node of the tree is as
struct Node {
int data;
Node *left;
Node *right;
Node(int val) {
data = val;
left = right = NULL;
}
};
*/
// return true/false denoting whether the tree is Symmetric or not
bool isBST(struct Node* root)
{
// Code here
}
Submission at 2024-11-22 06:03:22
/*
Structure of the node of the tree is as
struct Node {
int data;
Node *left;
Node *right;
Node(int val) {
data = val;
left = right = NULL;
}
};
*/
// return true/false denoting whether the tree is Symmetric or not
bool isBST(struct Node* root)
{
// Code here
}